Abstract

This vignette shows how to calculate and visualize accessibility in R using the r5r package.

1. Introduction

Accessibility indicators measure the ease with which opportunities, such as jobs, can be reached by a traveler from a particular location (Levinson and et al. 2020). One of the simplest forms of accessibility metrics is the cumulative-opportunities, which counts all of the opportunities accessible from each location in less than a cutoff time. Using a travel time matrix and information on the number of opportunities available at each location, we can calculate and map accessibility. This vignette shows how to do that in R using the r5r package.

In this reproducible example, we will be using a sample data set for the city of Porto Alegre (Brazil) included in r5r. We can compute accessibility in 5 quick steps:

  1. Increase Java memory and load libraries
  2. Build routable transport network
  3. Calculate Accessibility
  4. Map Accessibility

2. Build routable transport network with setup_r5()

Increase Java memory and load libraries

Before we start, we need to increase the memory available to Java and load the packages used in this vignette

options(java.parameters = "-Xmx2G")

library(r5r)
library(sf)
library(data.table)
library(ggplot2)
library(interp)
library(dplyr)

To build a routable transport network with r5r and load it into memory, the user needs to call setup_r5 with the path to the directory where OpenStreetMap and GTFS data are stored.

# system.file returns the directory with example data inside the r5r package
# set data path to directory containing your own data if not using the examples
data_path <- system.file("extdata/poa", package = "r5r")

r5r_core <- setup_r5(data_path)

3. Calculate Accessibility

In this example, we will be calculating the number of schools and public healthcare facilities accessible by public transport within a travel time of up to 20 minutes. The sample data provided contains information on the spatial distribution of schools in Porto Alegre in the points$schools column, and healthcare facilities in the points$healthcare column.

With the code below we compute the number of schools and healthcare accessible considering median of multiple travel time estimates departing every minute over a 60-minute time window, between 2pm and 3pm. The accessibility() function can calculate access to multiple opportunities in a single call, which is much more efficient and convenient than producing a travel time matrix of the study area and manually computing accessibility.

# read all points in the city
points <- fread(file.path(data_path, "poa_hexgrid.csv"))

# routing inputs
mode <- c("WALK", "TRANSIT")
max_walk_time <- 30 # in minutes
travel_time_cutoff <- 21 # in minutes
departure_datetime <- as.POSIXct("13-05-2019 14:00:00",
                                 format = "%d-%m-%Y %H:%M:%S")

time_window <- 60 # in minutes
percentiles <- 50

# calculate travel time matrix
access <- accessibility(r5r_core,
                        origins = points,
                        destinations = points,
                        mode = mode,
                        opportunities_colnames = c("schools", "healthcare"),
                        decay_function = "step",
                        cutoffs = travel_time_cutoff,
                        departure_datetime = departure_datetime,
                        max_walk_time = max_walk_time,
                        time_window = time_window,
                        percentiles = percentiles,
                        progress = FALSE)


head(access)
#>                 id opportunity percentile cutoff accessibility
#> 1: 89a901291abffff     schools         50     21             3
#> 2: 89a901291abffff  healthcare         50     21             5
#> 3: 89a9012a3cfffff     schools         50     21             0
#> 4: 89a9012a3cfffff  healthcare         50     21             0
#> 5: 89a901295b7ffff     schools         50     21             5
#> 6: 89a901295b7ffff  healthcare         50     21             2

4. Map Accessibility

The final step is mapping the accessibility results calculated earlier. The code below demonstrates how to do that, with some extra steps to produce a prettier map by doing a spatial interpolation of accessibility estimates.

# interpolate estimates to get spatially smooth result
access_schools <- access %>% 
  filter(opportunity == "schools") %>%
  inner_join(points, by='id') %>%
  with(interp::interp(lon, lat, accessibility)) %>%
  with(cbind(acc=as.vector(z),  # Column-major order
             x=rep(x, times=length(y)),
             y=rep(y, each=length(x)))) %>% as.data.frame() %>% na.omit() %>%
  mutate(opportunity = "schools")

access_health <- access %>% 
  filter(opportunity == "healthcare") %>%
  inner_join(points, by='id') %>%
  with(interp::interp(lon, lat, accessibility)) %>%
  with(cbind(acc=as.vector(z),  # Column-major order
             x=rep(x, times=length(y)),
             y=rep(y, each=length(x)))) %>% as.data.frame() %>% na.omit() %>%
  mutate(opportunity = "healthcare")

access.interp <- rbind(access_schools, access_health)

# find results' bounding box to crop the map
bb_x <- c(min(access.interp$x), max(access.interp$x))
bb_y <- c(min(access.interp$y), max(access.interp$y))

# extract OSM network, to plot over map
street_net <- street_network_to_sf(r5r_core)

# plot
ggplot(na.omit(access.interp)) +
  geom_contour_filled(aes(x=x, y=y, z=acc), alpha=.8) +
  geom_sf(data = street_net$edges, color = "gray55", size=0.1, alpha = 0.9) +
  scale_fill_viridis_d(direction = -1, option = 'B') +
  scale_x_continuous(expand=c(0,0)) +
  scale_y_continuous(expand=c(0,0)) +
  coord_sf(xlim = bb_x, ylim = bb_y, datum = NA) + 
  labs(fill = "Facilities within\n20 minutes\n(median travel time)") +
  theme_minimal() +
  theme(axis.title = element_blank()) +
  facet_wrap(~opportunity)

If you have any suggestions or want to report an error, please visit the package GitHub page.

References

Levinson, David, and et al. 2020. “Transport Access Manual: A Guide for Measuring Connection Between People and Places,” January. https://ses.library.usyd.edu.au/handle/2123/23733.