Calculates the Gini Index of a given accessibility distribution.
Usage
gini_index(
accessibility_data,
sociodemographic_data,
opportunity,
population,
group_by = character(0)
)Arguments
- accessibility_data
A data frame. The accessibility levels whose inequality should be calculated. Must contain the columns
idand any others specified inopportunity.- sociodemographic_data
A data frame. The distribution of sociodemographic characteristics of the population in the study area cells. Must contain the columns
idand any others specified inpopulation.- opportunity
A string. The name of the column in
accessibility_datawith the accessibility levels to be considerend when calculating inequality levels.- population
A string. The name of the column in
sociodemographic_datawith the number of people in each cell. Used to weigh accessibility levels when calculating inequality.- group_by
A
charactervector. When notcharacter(0)(the default), indicates theaccessibility_datacolumns that should be used to group the inequality estimates by. For example, ifaccessibility_dataincludes ascenariocolumn that identifies distinct scenarios that each accessibility estimates refer to (e.g. before and after a transport policy intervention), passing"scenario"to this parameter results in inequality estimates grouped by scenario.
See also
Other inequality:
concentration_index(),
palma_ratio(),
theil_t()
Examples
if (FALSE) { # identical(tolower(Sys.getenv("NOT_CRAN")), "true")
data_dir <- system.file("extdata", package = "accessibility")
travel_matrix <- readRDS(file.path(data_dir, "travel_matrix.rds"))
land_use_data <- readRDS(file.path(data_dir, "land_use_data.rds"))
access <- cumulative_cutoff(
travel_matrix,
land_use_data,
cutoff = 30,
opportunity = "jobs",
travel_cost = "travel_time"
)
gini <- gini_index(
access,
sociodemographic_data = land_use_data,
opportunity = "jobs",
population = "population"
)
gini
}
