Results of the AOP project are spatially aggregated on a H3 spatial grid at
resolution 9, with a side of 174 meters and an area of 0.10 km2. More
information about H3 at https://h3geo.org/docs/core-library/restable/.
See the documentation 'Details' for the data dictionary.
     
    
    Usage
    read_grid(city = NULL, showProgress = FALSE)
 
    
    Arguments
- city
- Character. A city name or three-letter abbreviation. If
- city="all", the function returns data for all cities.
 
- showProgress
- Logical. Defaults to - TRUEdisplay progress bar.
 
 
    
    Value
    An sf data.frame object
     
    
    Data dictionary:
| Data type | column | Description | 
| geographic | id_hex | Unique id of hexagonal cell | 
| geographic | abbrev_muni | Abbreviation of city name (3 letters) | 
| geographic | name_muni | City name | 
| geographic | code_muni | 7-digit code of each city | 
 
    
    Cities available
| City name | Three-letter abbreviation | 
| Belem | bel | 
| Belo Horizonte | bho | 
| Brasilia | bsb | 
| Campinas | cam | 
| Campo Grande | cgr | 
| Curitiba | cur | 
| Duque de Caxias | duq | 
| Fortaleza | for | 
| Goiania | goi | 
| Guarulhos | gua | 
| Maceio | mac | 
| Manaus | man | 
| Natal | nat | 
| Porto Alegre | poa | 
| Recife | rec | 
| Rio de Janeiro | rio | 
| Salvador | sal | 
| Sao Goncalo | sgo | 
| Sao Luis | slz | 
| Sao Paulo | spo | 
 
    
    Examples
    # Read spatial grid of a single city
nat <- read_grid(city = 'Natal', showProgress = FALSE)
# Read spatial grid of all cities in the project
# all <- read_grid(city = 'all', showProgress = FALSE)