Download spatial data of Brazil's Immediate Geographic Areas
Source:R/read_immediate_region.R
read_immediate_region.Rd
The Immediate Geographic Areas are part of the geographic division of Brazil created in 2017 by IBGE. These regions were created to replace the "Micro Regions" division. Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
Usage
read_immediate_region(
code_immediate = "all",
year = 2019,
simplified = TRUE,
showProgress = TRUE,
cache = TRUE
)
Arguments
- code_immediate
6-digit code of an immediate region. If the two-digit code or a two-letter uppercase abbreviation of a state is passed, (e.g. 33 or "RJ") the function will load all immediate regions of that state. If
code_immediate="all"
(Default), the function downloads all immediate regions of the country.- year
Numeric. Year of the data in YYYY format. Defaults to
2019
.- simplified
Logic
FALSE
orTRUE
, indicating whether the function should return the data set with 'original' spatial resolution or a data set with 'simplified' geometry. Defaults toTRUE
. For spatial analysis and statistics users should setsimplified = FALSE
. Borders have been simplified by removing vertices of borders usingst_simplify{sf}
preserving topology with adTolerance
of 100.- showProgress
Logical. Defaults to
TRUE
display progress bar.- cache
Logical. Whether the function should read the data cached locally, which is faster. Defaults to
cache = TRUE
. By default,geobr
stores data files in a temporary directory that exists only within each R session. Ifcache = FALSE
, the function will download the data again and overwrite the local file.
See also
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
Examples
# Read an specific immediate region
im <- read_immediate_region(code_immediate=110006)
#> Using year/date 2019
# Read immediate regions of a state
im <- read_immediate_region(code_immediate=12)
#> Using year/date 2019
im <- read_immediate_region(code_immediate="AM")
#> Using year/date 2019
# Read all immediate regions of the country
im <- read_immediate_region()
#> Using year/date 2019
im <- read_immediate_region(code_immediate="all")
#> Using year/date 2019