This function reads the official data on the urban footprint of Brazilian cities in the years 2005 and 2015. Original data were generated by the Institute of Geography and Statistics (IBGE) For more information about the methodology, see details at https://biblioteca.ibge.gov.br/visualizacao/livros/liv100639.pdf
read_urban_area(
year = 2015,
code_state = "all",
simplified = TRUE,
showProgress = TRUE,
cache = TRUE
)
Numeric. Year of the data in YYYY format. Defaults to 2015
.
The two-digit code of a state or a two-letter uppercase
abbreviation (e.g. 33 or "RJ"). If code_state="all"
(the
default), the function downloads all states.
Logic FALSE
or TRUE
, indicating whether the function
should return the data set with 'original' spatial resolution or a data set
with 'simplified' geometry. Defaults to TRUE
. For spatial analysis and
statistics users should set simplified = FALSE
. Borders have been
simplified by removing vertices of borders using st_simplify{sf}
preserving
topology with a dTolerance
of 100.
Logical. Defaults to TRUE
display progress bar.
Logical. Whether the function should read the data cached
locally, which is faster. Defaults to cache = TRUE
. By default,
geobr
stores data files in a temporary directory that exists only
within each R session. If cache = FALSE
, the function will download
the data again and overwrite the local file.
An "sf" "data.frame"
object
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_municipality()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_concentrations()
,
read_weighting_area()
# Read urban footprint of Brazilian cities in an specific year
d <- read_urban_area(year=2005)