Download spatial data of Brazil's Intermediate Geographic Areas
Source:R/read_intermediate_region.R
      read_intermediate_region.RdThe intermediate Geographic Areas are part of the geographic division of Brazil created in 2017 by IBGE. These regions were created to replace the "Meso Regions" division. Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674)
Usage
read_intermediate_region(
  code_intermediate = "all",
  year = 2019,
  simplified = TRUE,
  showProgress = TRUE,
  cache = TRUE
)Arguments
- code_intermediate
- 4-digit code of an intermediate region. If the two-digit code or a two-letter uppercase abbreviation of a state is passed, (e.g. 33 or "RJ") the function will load all intermediate regions of that state. If - code_intermediate="all"(Default), the function downloads all intermediate regions of the country.
- year
- Numeric. Year of the data in YYYY format. Defaults to - 2019.
- simplified
- Logic - FALSEor- TRUE, indicating whether the function should return the data set with 'original' spatial resolution or a data set with 'simplified' geometry. Defaults to- TRUE. For spatial analysis and statistics users should set- simplified = FALSE. Borders have been simplified by removing vertices of borders using- st_simplify{sf}preserving topology with a- dToleranceof 100.
- showProgress
- Logical. Defaults to - TRUEdisplay progress bar.
- cache
- Logical. Whether the function should read the data cached locally, which is faster. Defaults to - cache = TRUE. By default,- geobrstores data files in a temporary directory that exists only within each R session. If- cache = FALSE, the function will download the data again and overwrite the local file.
See also
Other area functions:
read_amazon(),
read_biomes(),
read_capitals(),
read_comparable_areas(),
read_country(),
read_disaster_risk_area(),
read_health_facilities(),
read_health_region(),
read_immediate_region(),
read_indigenous_land(),
read_meso_region(),
read_metro_area(),
read_micro_region(),
read_municipal_seat(),
read_municipality(),
read_neighborhood(),
read_pop_arrangements(),
read_region(),
read_schools(),
read_semiarid(),
read_state(),
read_statistical_grid(),
read_urban_area(),
read_urban_concentrations(),
read_weighting_area()
Examples
# Read an specific intermediate region
  im <- read_intermediate_region(code_intermediate=1202)
#> Using year/date 2019
# Read intermediate regions of a state
  im <- read_intermediate_region(code_intermediate=12)
#> Using year/date 2019
  im <- read_intermediate_region(code_intermediate="AM")
#> Using year/date 2019
# Read all intermediate regions of the country
  im <- read_intermediate_region()
#> Using year/date 2019
  im <- read_intermediate_region(code_intermediate="all")
#> Using year/date 2019