Download spatial data of Brazilian municipalities
Source:R/read_municipality.R
read_municipality.Rd
Data at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674).
Usage
read_municipality(
code_muni = "all",
year = 2010,
simplified = TRUE,
showProgress = TRUE,
cache = TRUE,
keep_areas_operacionais = FALSE
)
Arguments
- code_muni
The 7-digit identification code of a municipality. If
code_muni = "all"
(Default), the function downloads all municipalities of the country. Alternatively, if a two-digit identification code or a two-letter uppercase abbreviation of a state is passed (e.g.33
or"RJ"
), all municipalities of that state will be downloaded. Municipality identification codes can be consulted with thegeobr::lookup_muni()
function.- year
Numeric. Year of the data in YYYY format. Defaults to
2010
.- simplified
Logic
FALSE
orTRUE
, indicating whether the function should return the data set with 'original' spatial resolution or a data set with 'simplified' geometry. Defaults toTRUE
. For spatial analysis and statistics users should setsimplified = FALSE
. Borders have been simplified by removing vertices of borders usingst_simplify{sf}
preserving topology with adTolerance
of 100.- showProgress
Logical. Defaults to
TRUE
display progress bar.- cache
Logical. Whether the function should read the data cached locally, which is faster. Defaults to
cache = TRUE
. By default,geobr
stores data files in a temporary directory that exists only within each R session. Ifcache = FALSE
, the function will download the data again and overwrite the local file.- keep_areas_operacionais
Logic. Whether the function should keep the polygons of Lagoas dos Patos and Lagoa Mirim in the State of Rio Grande do Sul (considered as areas estaduais operacionais). Defaults to
FALSE
.
See also
Other area functions:
read_amazon()
,
read_biomes()
,
read_capitals()
,
read_comparable_areas()
,
read_country()
,
read_disaster_risk_area()
,
read_health_facilities()
,
read_health_region()
,
read_immediate_region()
,
read_indigenous_land()
,
read_intermediate_region()
,
read_meso_region()
,
read_metro_area()
,
read_micro_region()
,
read_municipal_seat()
,
read_neighborhood()
,
read_pop_arrangements()
,
read_region()
,
read_schools()
,
read_semiarid()
,
read_state()
,
read_statistical_grid()
,
read_urban_area()
,
read_urban_concentrations()
,
read_weighting_area()
Examples
# Read specific municipality at a given year
mun <- read_municipality(code_muni = 1200179, year = 2017)
#> Using year/date 2017
# Read all municipalities of a state at a given year
mun <- read_municipality(code_muni = 33, year = 2010)
#> Using year/date 2010
mun <- read_municipality(code_muni = "RJ", year = 2010)
#> Using year/date 2010
# Read all municipalities of the country at a given year
mun <- read_municipality(code_muni = "all", year = 2018)
#> Using year/date 2018