Download spatial data of Brazilian municipalities
Source:R/read_municipality.R
      read_municipality.RdData at scale 1:250,000, using Geodetic reference system "SIRGAS2000" and CRS(4674).
Usage
read_municipality(
  code_muni = "all",
  year = 2010,
  simplified = TRUE,
  showProgress = TRUE,
  cache = TRUE,
  keep_areas_operacionais = FALSE
)Arguments
- code_muni
- The 7-digit identification code of a municipality. If - code_muni = "all"(Default), the function downloads all municipalities of the country. Alternatively, if a two-digit identification code or a two-letter uppercase abbreviation of a state is passed (e.g.- 33or- "RJ"), all municipalities of that state will be downloaded. Municipality identification codes can be consulted with the- geobr::lookup_muni()function.
- year
- Numeric. Year of the data in YYYY format. Defaults to - 2010.
- simplified
- Logic - FALSEor- TRUE, indicating whether the function should return the data set with 'original' spatial resolution or a data set with 'simplified' geometry. Defaults to- TRUE. For spatial analysis and statistics users should set- simplified = FALSE. Borders have been simplified by removing vertices of borders using- st_simplify{sf}preserving topology with a- dToleranceof 100.
- showProgress
- Logical. Defaults to - TRUEdisplay progress bar.
- cache
- Logical. Whether the function should read the data cached locally, which is faster. Defaults to - cache = TRUE. By default,- geobrstores data files in a temporary directory that exists only within each R session. If- cache = FALSE, the function will download the data again and overwrite the local file.
- keep_areas_operacionais
- Logic. Whether the function should keep the polygons of Lagoas dos Patos and Lagoa Mirim in the State of Rio Grande do Sul (considered as areas estaduais operacionais). Defaults to - FALSE.
See also
Other area functions:
read_amazon(),
read_biomes(),
read_capitals(),
read_comparable_areas(),
read_country(),
read_disaster_risk_area(),
read_health_facilities(),
read_health_region(),
read_immediate_region(),
read_indigenous_land(),
read_intermediate_region(),
read_meso_region(),
read_metro_area(),
read_micro_region(),
read_municipal_seat(),
read_neighborhood(),
read_pop_arrangements(),
read_region(),
read_schools(),
read_semiarid(),
read_state(),
read_statistical_grid(),
read_urban_area(),
read_urban_concentrations(),
read_weighting_area()
Examples
# Read specific municipality at a given year
mun <- read_municipality(code_muni = 1200179, year = 2017)
#> Using year/date 2017
# Read all municipalities of a state at a given year
mun <- read_municipality(code_muni = 33, year = 2010)
#> Using year/date 2010
mun <- read_municipality(code_muni = "RJ", year = 2010)
#> Using year/date 2010
# Read all municipalities of the country at a given year
mun <- read_municipality(code_muni = "all", year = 2018)
#> Using year/date 2018