Estimate hot-exhaust emissions of public transport systems. This
function must be used together with transport_model
.
Usage
emission_model(
tp_model,
ef_model,
fleet_data,
pollutant,
reference_year = 2020,
process = "hot_exhaust",
heightfile = NULL,
parallel = TRUE,
ncores = NULL,
output_path = NULL,
continue = FALSE,
quiet = TRUE
)
Arguments
- tp_model
sf_linestring object or a character path the to sf_linestring objects. The
tp_model
is the output fromtransport_model
, or the path in which the output files from thetransport_model
are saved.- ef_model
character. A string indicating the emission factor model to be used. Options include
ef_usa_moves
,ef_usa_emfac
,ef_europe_emep
, ,ef_brazil_cetesb
, andef_brazil_scaled_euro
(scaleef_brazil_cetesb()
based onef_scaled_euro()
).- fleet_data
data.frame. A
data.frame
with information the fleet characteristics. The required columns depend on theef_model
selection. See @examples for input.- pollutant
character. Vector with one or more pollutants to be estimated. Example:
c("CO", "CO2", "PM10", "NOx")
. See the documentation to check which pollutants are available for each emission factor model (ef_usa_moves
,ef_usa_emfac
,ef_europe_emep
, oref_brazil_cetesb
).- reference_year
numeric. Year of reference considered to calculate the emissions inventory. Defaults to
2020
. This argument is only required when theef_model
parameter isef_usa_moves
oref_usa_emfac
.- process
character; Emission process, classified in "hot_exhaust" (Default), and wear processes (identified as "tyre","brake" and/or "road" wear). Note that wear processes are only available when the
ef_europe_emep
is selected in the @param ef_model. Details on wear emissions are presented inemi_europe_emep_wear
.- heightfile
character or raster data. The raster file with height data, or its filepath, used to estimate emissions considering the effect of street slope. This argument is used only when
ef_brazil_scaled_euro
oref_europe_emep
are selected. Default isNULL
. Details are provided inslope_class_europe_emep
.- parallel
logical. Decides whether the function should run in parallel. Defaults is
TRUE
.- ncores
integer. Number of cores to be used in parallel execution. This argument is ignored if parallel is
FALSE
. Default (NULL
) selects the total number of available cores minus one.- output_path
character. File path where the function output is exported. If
NULL
(Default), the function returns the output to user.- continue
logical. Argument that can be used only with output_path When TRUE, it skips processing the shape identifiers that were already saved into files. It is useful to continue processing a GTFS file that was stopped for some reason. Default value is FALSE.
- quiet
Logical; Display messages from the emissions or emission factor functions. Default is 'TRUE'.
Details
The fleet_data
must be a data.frame
organized according to the desired
ef_model
. The required columns is organized as follows (see @examples for real
data usage).
veh_type
: character; Bus type, classified according to the @param ef_model . Foref_emep_europe
, use "Ubus Midi <=15 t","Ubus Std 15 - 18 t", "Ubus Artic >18 t", "Coaches Std <=18 t" or "Coaches Artic >18 t"; Foref_usa_moves
oref_usa_emfac
, use "BUS_URBAN_D"; Foref_brazil_cetesb
, use "BUS_URBAN_D", "BUS_MICRO_D", "BUS_COACH_D" or "BUS_ARTIC_D".type_name_eu
: character; Bus type, used only for @param ef_modelef_scaled_euro
are selected. The classes can be "Ubus Midi <=15 t","Ubus Std 15 - 18 t", "Ubus Artic >18 t", "Coaches Std <=18 t" or "Coaches Artic >18 t".reference_year
: character; Base year of the emission factor model input. Required only whenef_usa_moves
oref_usa_emfac
are selected.tech
: character; After treatment technology. This is required only whenemep_europe
is selected. Check?ef_emep_europe
for details.euro
: character; Euro period of vehicle, classified in "Conventional", "I", "II", "III", "IV", "V", "VI", and "EEV". This is required only whenef_emep_europe
is selected. Checkef_europe_emep
for details.fuel
: character; Required whenef_usa_moves
,ef_usa_emfac
andef_europe_emep
are selected.fleet_composition
: Numeric. Scaled composition of fleet. In most cases, the user might not know which vehicles run on each specific routes. The composition is used to attribute a probability of a specific vehicle to circulate in the line. The probability sums one. Required for all emission factors selection. Users can check the gtfs2emis fleet data vignette, for more examples.
Based on the input height data, the function returns the slope class between two consecutive bus stop positions of a LineString Simple Feature (transport model object). The slope is given by the ratio between the height difference and network distance from two consecutive public transport stops. The function classifies the slope into one of the seven categories available on the European Environmental Agency (EEA) database, which is -0.06, -0.04,-0.02, 0.00, 0.02, 0.04, and 0.06.
See also
Other Core function:
transport_model()
Examples
# \donttest{
if (requireNamespace("gtfstools", quietly=TRUE)) {
# read GTFS
gtfs_file <- system.file("extdata/bra_cur_gtfs.zip", package = "gtfs2emis")
gtfs <- gtfstools::read_gtfs(gtfs_file)
# keep a single trip_id to speed up this example
gtfs_small <- gtfstools::filter_by_trip_id(gtfs, trip_id ="4451136")
# run transport model
tp_model <- transport_model(gtfs_data = gtfs_small,
min_speed = 2,
max_speed = 80,
new_speed = 20,
spatial_resolution = 100,
parallel = FALSE)
# Example using Brazilian emission model and fleet
fleet_data_ef_cetesb <- data.frame(veh_type = "BUS_URBAN_D",
model_year = 2010:2019,
fuel = "D",
fleet_composition = rep(0.1,10)
)
emi_cetesb <- progressr::with_progress(emission_model(
tp_model = tp_model,
ef_model = "ef_brazil_cetesb",
fleet_data = fleet_data_ef_cetesb,
pollutant = c("CO","PM10","CO2","CH4","NOx")
))
# Example using European emission model and fleet
fleet_data_ef_europe <- data.frame( veh_type = c("Ubus Midi <=15 t",
"Ubus Std 15 - 18 t",
"Ubus Artic >18 t")
, euro = c("III","IV","V")
, fuel = rep("D",3)
, tech = c("-","SCR","SCR")
, fleet_composition = c(0.4,0.5,0.1))
emi_emep <- progressr::with_progress(emission_model(tp_model = tp_model
, ef_model = "ef_europe_emep"
, fleet_data = fleet_data_ef_europe
, pollutant = c("PM10","NOx")))
emi_emep_wear <- progressr::with_progress(emission_model(tp_model = tp_model
, ef_model = "ef_europe_emep"
, fleet_data = fleet_data_ef_europe
, pollutant = "PM10"
, process = c("tyre","road","brake")))
raster_cur <- system.file("extdata/bra_cur-srtm.tif", package = "gtfs2emis")
emi_emep_slope <- progressr::with_progress(emission_model(tp_model = tp_model
, ef_model = "ef_europe_emep"
, fleet_data = fleet_data_ef_europe
, heightfile = raster_cur
, pollutant = c("PM10","NOx")))
# Example using US EMFAC emission model and fleet
fleet_data_ef_moves <- data.frame( veh_type = "BUS_URBAN_D"
, model_year = 2010:2019
, fuel = "D"
, reference_year = 2020
, fleet_composition = rep(0.1,10))
fleet_data_ef_emfac <- data.frame( veh_type = "BUS_URBAN_D"
, model_year = 2010:2019
, fuel = "D"
, reference_year = 2020
, fleet_composition = rep(0.1,10))
# Example using US MOVES emission model and fleet
emi_moves <- emission_model(tp_model = tp_model
, ef_model = "ef_usa_moves"
, fleet_data = fleet_data_ef_moves
, pollutant = c("CO","PM10","CO2","CH4","NOx")
, reference_year = 2020)
emi_emfac <- emission_model(tp_model = tp_model
, ef_model = "ef_usa_emfac"
, fleet_data = fleet_data_ef_emfac
, pollutant = c("CO","PM10","CO2","CH4","NOx")
, reference_year = 2020)
}
#> Converting shapes to sf objects
#> Processing the data
#> Constant emission factor along the route
# }